If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-26x+125=0
a = 1; b = -26; c = +125;
Δ = b2-4ac
Δ = -262-4·1·125
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-4\sqrt{11}}{2*1}=\frac{26-4\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+4\sqrt{11}}{2*1}=\frac{26+4\sqrt{11}}{2} $
| X/5+x/5=3 | | 2x/3x+(4x+5x)=5 | | 2x/7x-49=~ | | 5000=8940x-1620 | | 100000=20x-400000 | | -40+5w=46 | | 0=-8x+5 | | 15x-3-5(4x)=-5.5 | | 3r+27=18 | | .20h+5=-25 | | -y/5=-50 | | -34=v/9 | | 2x-100=200 | | 5x-x-20=8 | | 5x=40x^-½ | | 3x-x-x+48=100 | | 2x(13+14)=129 | | 5x+2x+x-20=160 | | X+2x+2x-10=130 | | x+x+30+220-3x=180 | | T=C/1+i | | 4x+23=x+50 | | 3x-x+2x+10=100 | | 6/16=m/19 | | 2x+4=5x+16 | | (8x+1)(8x+1)=0 | | 2x+15=-2x+35 | | X+5=5x-19 | | 7m+2=60 | | 7/6(x)=2x-20 | | 7/6x=2x-20 | | 1/21+1/28+1/48=1/x |